skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cummings, Caroline A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability of multiple bat species to host zoonotic pathogens without often showing disease has fostered a growing interest in bat immunology to discover the ways immune systems may differ between bats and other vertebrates. However, interspecific variation in immunological diversity among bats has only begun to be recognized. The order Chiroptera accounts for over 20% of all mammalian species and shows extreme diversity in a suite of correlated ecological traits, such that bats should not be expected to be immunologically homogenous. We review the ecological and evolutionary diversity of chiropteran hosts and highlight case studies emphasizing the range of immune strategies thus far observed across bat species, including responses to SARS‐CoV‐2. Next, we synthesize and propose hypotheses to explain this immunological diversity, focusing on pathogen exposure, biogeography, host energetics, and environmental stability. We then analyze immunology‐related citations across bat species to motivate discussions of key research priorities. Broad sampling is needed to remedy current biases, as only a fraction of bat species has been immunologically studied. Such work should integrate methodological advancements, in vitro and in vivo studies, and phylogenetic comparative methods to robustly test evolutionary hypotheses and understand the drivers and consequences of immunological diversity among bats. 
    more » « less
  2. Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions. 
    more » « less